
Abstract

We present an improvement on an algorithm for
generating tables to drive a bottom-up tree pattern
matcher. The improved algorithm has time and space
requirements roughly comparable to those of LALR
parser generators, and orders of magnitude better
than those of the unimproved table-generating algo-
rithm. This work may have application to interpreter
construction, code generation, optimization and type-
checking.

Page 1

An Improvement to Bottom-up Tree Pattern Matching

David R. Chase∗

Department of Computer Science
Rice University
Houston, Texas

1 The problem

Given a finite set of “tree patterns” (trees with wild-
cards at some leaves), produce off-line an automaton
that will locate all “instances” of those patterns oc-
curring in input trees. An instance of a tree pattern
is another (sub)tree, exactly the same except where
wildcards occur within the pattern. Such instances
are known as “matches”.

More carefully:

trees A tree is built out of nodes with zero or more
children. A child of a node is another tree. A
node with no children is called a leaf. All nodes
have labels, and all nodes with the same label
have the same number of children. In this pa-
per, the number of children associated with a la-
bel A is arity(A), and a tree labelled A with chil-
dren t1 through tn (with n = arity(A)) is written
A[t1, . . . , tn]. The set of labels is finite. Leaves
are written either as the label alone (e.g., “A”)
or as a node with no children (e.g., “A[]”) when
there might be some confusion between leaves
and labels.

patterns A pattern is a tree that may have “wild-
card nodes” for some leaves. All wildcard nodes
are indistinguishable, and will be written in this
paper as “∗”.

matching A pattern p matches a tree t if either

1. p = ∗
2. t = A[t1, . . . , tn] and p = A[p1, . . . , pn] and

for 1 ≤ i ≤ n, ti matches pi (including the
case where n is zero; that is, t and p are two
leaves with the same label). A “match” is
a (sub)tree of t matched by some pattern.

∗Supported by IBM and NSF. This report is a revision of a
paper by the same name appearing in the 1987 ACM Principles
of Programming Languages Conference.

For example, figure 1 shows the two patterns
A[T, ∗] and B[A[∗, ∗], ∗]. The label A has arity 2,
∗ is a wildcard, and T is a leaf. In figure 2 is the tree
A1[T,B2[A1[T, F], A[F, F]]] with the roots of subtrees
matched by the two patterns indicated with super-
scripts. Notice that matches may be nested, and that
matches may overlap.

Figure 1: Example patterns

pattern 1
a

�� JJ
t ∗

pattern 2
b

�� JJ
a

�� JJ∗ ∗

∗

Figure 2: Example tree with matches

a
�� JJ

1

t b
�

��
J

JJ

2

a
�� JJ

1

t f

a
�� JJ

f f

2 Background

Hoffmann and O’Donnell describe several techniques
for tree pattern matching in [HO82]. One general
method given there is known as “bottom-up” pattern
matching. It has several advantages over other meth-
ods which they describe: the pattern matcher runs in
time proportional to the size of the input tree; there
are no restrictions on the set of patterns to locate;
it can quickly update a tree annotated with pattern
matching information after a small change to the tree.

Page 2

In addition, a bottom-up matcher can be adapted to
locate tree patterns in DAGs or general graphs.

The bottom-up algorithm computes sets of pat-
terns that will match nodes of the input tree. The
set of patterns to be matched, P , is combined with
all subpatterns of patterns in P to form the pattern
forest PF . If a non-leaf pattern p is in PF , then all
children of p are in PF . For each node of an input
tree the bottom-up algorithm produces the set of all
patterns in PF that match the subtree rooted at that
node. These sets of nodes are called matching sets.
The pattern matches within an input tree are exactly
those nodes whose matching sets contain some mem-
ber of P . The bottom-up algorithm appears in fig-
ure 3.

Figure 3: Bottom-up matching set algorithm

M(t) =

let U =

{

{∗} if ∗ is in PF
{} otherwise

if t = A[]
then if A[] ∈ PF

then U ∪ {A[]}
else U

else
let A[t1, . . . , tn] = t
let MSP = M(t1)× · · · ×M(tn)

PF ∩

U ∪
⋃

(p1,...,pn)∈MSP

{A[p1, . . . , pn]}

M(t) returns all patterns in PF matching t. For
a leaf t, if t is in PF then M(t) is the set {t, ∗} (or
{t} if ∗ is not in PF). If t is not in PF , then M(t) is
{∗} (or {}). In either case, M(t) is exactly the set of
patterns in PF matching the leaf t.

For a non-leaf tree t, M is applied to each of t’s
children to yield their matching sets. The product of
these sets is used to construct MSP, a set of pattern
tuples. Each tuple (p1, . . . , pn) in MSP is an indepen-
dent combination of patterns that match t’s children;
together with t’s label, these form a new pattern that
matches t. Performing this operation for each mem-
ber of MSP yields a set of patterns, all matching t.
This set does not contain ∗; if ∗ is in PF , then union
with U adds it to the set. At this point the set of
patterns contains every pattern in PF that matches t
(this must be so, since every subtree of every non-leaf
pattern in PF is also in PF) plus perhaps a few that
are not in PF . To remove the extraneous patterns,
the set is intersected with PF to yield exactly those
patterns in PF that match t. In the rest of the paper
I will use the term tree-set building for the process of

forming a matching set of patterns from a label and a
tuple of pattern sets. Note that “forming a matching
set” includes the union with U and intersection with
PF . The else clause of M then becomes, “build a
tree-set from the tuple (M1, . . . ,Mn).”

2.1 Table-driven version

PF is finite, so its powerset is finite. M always returns
some subset of PF , so the powerset of PF contains
the range of M . Thus, there is a finite number of
matching sets for any pattern forest, so the match-
ing sets may be numbered. Because each label has a
fixed arity, it is possible to create a table with dimen-
sion equal to the arity, and to assign to each entry
the number for the tree-set built from the table’s la-
bel and the matching set tuple corresponding to the
entry’s coordinates in the table. Leaf labels are asso-
ciated with the numbers for their matching sets; these
may be thought of as tables with dimension zero.

Given a numbering for the matching sets and ta-
bles for the labels, all set operations can be removed
from the bottom-up algorithm. The new algorithm
is shown in figure 4. For a leaf node, it simply re-
turns the corresponding matching set’s number. For
an interior node, it recursively finds the numbers for
the node’s children and uses the resulting tuple as an
index into the node’s label’s table.

Figure 4: Table lookup bottom-up matching set al-
gorithm

N(t) =
if t = A[]
then τA

else
let A[t1, . . . , tn] = t
τA(N(t1), . . . , N(tn))

In theory, generating all possible matching sets is
easy. An algorithm to do this appears in figure 5. It
iteratively produces matching sets containing taller
and taller patterns until it has produced all possible
matching sets. The input to this algorithm is the
pattern forest PF and the set of node labels L.

The first step initializes U to the set of patterns in
PF that will match every node in the tree. If ∗ is
in PF , then ∗ is in U ; otherwise, U is empty. The
second step of the algorithm builds R0, the set of
possible matching sets of patterns with height equal
to zero. These patterns can only be leaves, so all
possible matching sets of leaves are generated here1.

1Notice that sets like {A[], B[], ∗} are not matching sets
because there is no tree that every pattern in that set will

Page 3

Figure 5: Algorithm to generate matching sets

let U =

{

{∗} if ∗ is in PF
{} otherwise

R0 ← {U} ∪
⋃

A∈L∧

arity(A)=0∧

A[]∈PF

{U ∪ {A[]}}

repeat

Ri+1 ←Ri ∪
⋃

A∈L

⋃

MSP = (R1 × · · · ×Rn)
(R1, . . . , Rn) ∈ Rn

i

{R}

where R = PF∩

U ∪
⋃

(p1,...,pn)∈MSP

{A[p1, . . . , pn]}

until Ri+1 = Ri

R← Ri

In subsequent steps the algorithm computes match-
ing sets containing larger patterns. At each iteration
of the loop the existing set of matching sets is used
to form, for each label A, a product set of n-tuples of
matching sets. Each element of this product set is an
independent combination of sets containing patterns
that might match children of a node labelled A.

For each element of the set of set tuples (Rn
i),

form a product set MSP containing tuples of pat-
terns. Each one of these tuples contains patterns that
might match children of a node labelled A; by using
the child-matching patterns as children of a node la-
belled A, a larger pattern is built. Performing this
operation for each member of MSP produces a set
of patterns that match a node labelled A if its chil-
dren are matched by the patterns in R1 through Rn,
respectively.

The wildcard is not in the set, so it is added, since
it will match any tree. Intersection with PF limits the
set so that it contains only those matching patterns
that are also in PF . Repeating this process gener-
ates more and more matching sets until all possible
matching sets are formed. The algorithm terminates
after h iterations of the loop, where h is the height of

match. Matching sets must also contain every pattern in PF
that matches; if ∗ is in PF , {A[]} is not a matching set.

the tallest pattern in PF .

2.2 Correctness

Any set returned by M is inR. This is clearly true for
leaves. Inductively, assume that this is true for trees
with height less than h. Given a tree t = A[t1, . . . , tn]
with height h, the sets M(t1) through M(tn) are con-
tained in R. M(t) is the set of patterns formed by
using patterns in the M(tj) as children of a pattern
with root label A, adding U , and intersecting with
PF . However, R contains the same set of patterns
because it contains a set formed in exactly the same
way from the same sets. So, every set of patterns
returned by M is in R.

Conversely, for every set R in R there is some tree
t such that M(t) = R. This is clearly true when R
contains only leaves; either R = U ∪{A[]} or R = U .
Inductively, assume that this is true for R contain-
ing patterns with height less than h. Given a set of
patterns R′ in R with height less than or equal to
h, there exist sets of patterns R1 through Rn with
height less than h and a label A such that their com-
bination, union with U and intersection with PF are
equal to R′. By assumption there are trees t1 through
tn such that M(tj) = Rj . M(A[t1, . . . , tn]) is formed
in exactly the same way as R′ from the same sets, so
they are equal.

2.3 Performance of the table genera-
tor

In the worst case this algorithm takes time and space
exponential in the number of patterns because the
number of matching sets can be exponential in the
number of patterns. The algorithm is also exponen-
tial in the maximum arity of the node labels. In prac-
tice, however, the number of matching sets is nowhere
near the exponential worst case, and for typical ap-
plications label arities are usually quite small (2 or
3). Unfortunately, even a modest number of match-
ing sets and an arity of two can lead to huge tables
with size proportional to |R|2, making the algorithm
unpractical.

O’Donnell discusses some attempts to solve this
problem in [O’D85], but concludes that efforts so far
have been ad hoc or so complex as to be untrustwor-
thy. If the set of patterns is guaranteed to be “simple”
(containing no “independent” patterns) the number
of matching sets is equal to the number of patterns
([HO82]), but this restriction excludes many interest-
ing pattern sets. Hatcher and Christopher ([HC86])
describe a method for use of a bottom-up matcher
in code generation; in some situations their method
discards information based on pattern costs, and in

Page 4

others it chooses one of two independent patterns.
Their method does not discard any information when
applied to a “closed template forest” ([Kro75]), but
adding enough patterns to a forest to obtain a closed
template forest may increase its size exponentially in
the same way that the number of matching sets may
be exponential in the number of patterns. Note that
postprocessing of large tables is not acceptable; often
these tables are so large that their construction is not
possible on existing computers.

2.4 Example

Figure 6 shows an input set of two patterns. Adding
all subpatterns of these patterns to the set gives PF ,
shown in figure 7.

In the first step (not shown), the algorithm creates
U , with U = {∗}. Next, it forms the matching sets
containing patterns with height equal to zero. These
are sets 1, 2 and 3 in figure 8. The first loop iteration
builds sets 4, 5 and 6 containing patterns with height
less than or equal to 1. After this first iteration R1

is the set containing matching sets 1 through 6. The
next iteration adds matching sets 7 and 8 to form R2.

Given this particular numbering of the matching
sets one can build a table that gives a node’s matching
set if the matching sets of its children are known. This
table is shown in figure 9. The numbers not appearing
in the table (2 and 3) are numbers for sets that match
the leaves b and c, respectively. Figure 10 shows a
tree in which the nodes have been annotated with
matching set information.

Notice that the table in figure 9 contains many du-
plicate rows and columns. It is possible to compress
the interior of the table and use “index maps” to
convert matching numbers into indices for the com-
pressed table. This is shown in figure 11; here the
compressed table is called θA and the index maps for
the first and second children are called µA1 and µA2,
respectively.

Figure 6: Patterns

a
�� JJ

a
�� JJ

b ∗

b

a
�� JJ

a
�� JJ∗ c

c

Figure 7: Pattern forest

a
�� JJ

a
�� JJ

b ∗

b

a
�� JJ

a
�� JJ∗ c

c

a
�� JJ

b ∗

a
�� JJ∗ c

b c ∗

Figure 8: Matching sets

1. {∗}
2. {b, ∗}
3. {c, ∗}

4.

{

a
�� JJ

b ∗
,

a
�� JJ∗ c

, ∗

}

5.

{

a
�� JJ∗ c

, ∗

}

6.

{

a
�� JJ

b ∗
, ∗

}

7.

a
�� JJ

a
�� JJ∗ c

c ,
a

�� JJ∗ c
, ∗

8.

a
�� JJ

a
�� JJ

b ∗

b , ∗

Figure 9: Label A’s lookup table

τA 2 1 2 3 4 5 6 7 8
1
1 1 1 5 1 1 1 1 1
2 6 6 4 6 6 6 6 6
3 1 1 5 1 1 1 1 1
4 1 8 7 1 1 1 1 1
5 1 1 7 1 1 1 1 1
6 1 8 5 1 1 1 1 1
7 1 1 7 1 1 1 1 1
8 1 1 5 1 1 1 1 1

Page 5

Figure 10: Application of bottom-up automaton

a
�� JJ

7

a
�� JJ

7

a
�� JJ

4

2b 3c

3c

3c

1a
���

HHH
a

�� JJ

5

a
�� JJ

8

a
�� JJ

6

2b a
�� JJ

4

2b 3c

2b

3c

Figure 11: Compressed lookup table

µA2
1 2 3 4 5 6 7 8
1 2 3 1 1 1 1 1

µA1

1 1
2 2
3 1
4 3
5 4
6 5
7 4
8 1

θA 2 1 2 3
1
1 1 1 5
2 6 6 4
3 1 8 7
4 1 1 7
5 1 8 5

Figure 12: Compressed table lookup algorithm

N(t) =
if t = A[]
then θA

else
let A[t1, . . . , tn] = t
θA(µA1(N(t1)), . . . , µAn(N(tn)))

3 Improvements

A table τA is said to contain a duplicate j-subtable if
there exist j, xj , and yj , xj 6= yj , such that

∀(x1, . . . , xj−1, xj+1, . . . , xn),

τA(x1, . . . , xj , . . . , xn) = τA(x1, . . . , yj , . . . , xn)(1)

The tables (naively) generated from the matching sets
often contain many duplicate subtables2. If the dupli-
cate subtables are known, it is possible to introduce,
for each label and child of the label, index maps that

2If the tables are two-dimensional, a subtable is a row
or a column; if they are three-dimensional, a subtable is a
two-dimensional section obtained by holding one coordinate
constant.

map matching sets with equal subtables into a sin-
gle set. Figure 12 shows an example of the result-
ing lookup algorithm (the index map for label A and
child j is µAj ; θA is the compressed version of τA),
and figure 11 shows tables suitable for use with this
algorithm. Cheng, Omdahl and Strawn ([COS82])
and Hatcher and Christopher ([HC86]) describe iden-
tical compression schemes, though they use them in
matchers that locate slightly different classes of pat-
terns and generate the tables and index maps in dif-
ferent ways.

As noted above, uncompressed tables may be so
large that they cannot be generated, even if the com-
pressed tables would be of manageable size. However,
it is possible to compress the tables before they are
ever generated by examining the matching sets. De-
fine PAj to be the set of patterns that appear as the
jth child of patterns with label A in PF . Because PF
is closed under taking subtrees, PAj is contained in
PF .

Consider the calculation of the table entry for
a given tuple of sets’ numbers. If the sets are
(R1, . . . , Rn) and the label is A, then the set (num-
ber) R assigned to that table entry is the result of

R = PF ∩

U ∪
⋃

(p1,...,pn)∈MSP

{A[p1, . . . , pn]}

where MSP = R1 × · · · ×Rj × · · · ×Rn

(2)
Now consider replacing the matching set Rj with the
set Rj ∩ PAj in (2). This cannot change the value of
R, because the only patterns missing from Rj ∩ PAj

are those that do not appear as the jth child of a
node labelled A in PF , and thus any pattern tuples
removed from MSP will not produce a pattern that is
in PF . Note that this holds in general; whatever the
value of j, R is unchanged, and whatever the values
of the other matching sets, R is unchanged.

If there is another set R′j such that R′j ∩ PAj =
Rj ∩ PAj , then both R′j and Rj will always produce
equal matching sets when substituted for one another
in (2), since in either case the result is the same as
that obtained by substituting Rj ∩ PAj . This ob-
servation is the key to easier table compression and
other improvements to the algorithm. Intersection
with PAj produces an equivalence relation over R;
two sets of patterns R and R′ are said to be Aj-
equivalent if R ∩ PAj = R′ ∩ PAj . For each A and j,
the set of matching sets (R) is partitioned up into a
set of sets of equivalent matching sets. This is cum-
bersome; it is much easier to represent an equivalence
class of sets with the set of patterns R∩PAj , where R
is any member of the equivalence class. Representing
the equivalence class with this one set also makes it

Page 6

easier to find the class to which a matching set be-
longs; intersection with PAj yields the representer set
for the class. For a given A, j, and R, the set of
representer sets will be called SAj .

To compress the jth dimension of τA, then, it suf-
fices to compute SAj and maps from the integers as-
sociated with the members of R to the integers as-
sociated with the members of SAj . These maps are
the µAj of the lookup algorithm in figure 12. Figure
13 illustrates the relationship between the maps and
the various sets. The sets I and IAj are the integers
corresponding to R and SAj .

Figure 13: Sets and maps for table compression

I

R

SA1

IA1

SA2

IA2

SA3

IA3

×

×

ρ σAj

µAj

∩PAj

θA ��
6

?

?

?

?

PPPPPPPPPPPq

-���������������:

�����������1

-XXXXXXXXXXXXXXXz

4 Further improvements

The previous section showed how it is possible to com-
press the tables of a bottom-up tree automaton with-
out actually forming the tables. However, the algo-
rithm to build the matching sets still iterates over
all the coordinates of the uncompressed table, and
this can be very time-consuming. This is unneces-
sary, since two members of the same Aj-equivalence
class will have the same effect when generating pat-
terns in the same way that they have the same effect
when computing table entries; it is both possible and

desirable to iterate over the coordinates of the com-
pressed tables.

To do this, notice that the sets PAj depend only
upon PF . Notice also that the Aj-equivalence classes
can be generated and maintained at the same time
that new matching sets are produced. For each set of
sets of patterns with height less than or equal to i, Ri,
there are sets of representer sets SAji. The equiva-
lence class associated with each representer may grow
as more matching sets are discovered, but the repre-
senter set is unchanged. With this change, the algo-
rithm iterates over the set SA1i × · · · × SAni instead
of over the set Rn

i when generating matching sets.
This also removes one iteration of the main loop

from the algorithm. Using matching sets to form
the product set, the algorithm generates the last new
matching set in the penultimate iteration. However,
the set of matching sets has changed, so the algo-
rithm must iterate once more. Even if it only iterates
over the new members of the product set, this can
be a large and costly computation. The improved
method will form the last representer set in its penul-
timate iteration; in its last iteration it will form the
last matching set.

Using representer sets instead of matching sets as
tuple elements speeds up tree-set building in another
way; each representer set is no larger than the small-
est matching set in its equivalence class. The set MSP
formed from a tuple of representer sets will contain no
more pattern tuples than any equivalent set formed
from a tuple of matching sets. Since the set of tu-
ples is smaller, forming a matching set from the set
of tuples and a label is easier.

The use of representer sets generated by the PAj
improves efficiency in four ways:

1. Table compression can be performed before the
tables are ever constructed.

2. The algorithm builds fewer combinations of sets
of patterns when searching for new matching
sets.

3. The last iteration is avoided.

4. For each combination of sets of patterns, the
combination contains fewer pattern tuples be-
cause the sets combined are themselves smaller.

The improved algorithm for generating matching
sets is shown in figure 14.

5 Optimality result

The tables produced by merging together subtables of
Aj-equivalent matching sets cannot be further com-
pressed.

Page 7

Figure 14: Improved matching set generation

U ←
{

{∗} if ∗ is in PF
{} otherwise

generate PAj for each A and j

R0 ← {U} ∪
⋃

A∈L∧

arity(A)=0∧

A[]∈PF

{U ∪ {A[]}}

generate SAj0 for each A and j

repeat

Ri+1 ←Ri ∪
⋃

A∈L

⋃

MSP = (S1 × · · · × Sn)
(S1, . . . , Sn) ∈

∏n
j=1 SAji

{R}

where R = PF∩

U ∪
⋃

(p1,...,pn)∈MSP

{A[p1, . . . , pn]}

and generate SAj(i+1) for each A and j

until ∀j,SAj(i+1) = SAji

R← Ri

SAj ← SAji for each A and j

To show: given two representer sets Xk and
Yk for distinct Ak-equivalence classes, there exists
some (x1, . . . , xn) such that θA(x1, . . . , xk, . . . , xn) 6=
θA(x1, . . . , yk, . . . , xn), where xj is (in general) the in-
teger corresponding to the representer set Xj .

Proof: It helps the proof to make the correspondence
between R and integers explicit, and to make the cor-
respondences between SAj and integers explicit. So,
ρ maps the set of matching sets R to {1, . . . , |R|}
one-to-one and onto, and for each Aj, σAj maps
SAj to {1, . . . , |SAj |} one-to-one and onto. The in-
verse maps ρ−1 and σ−1

Aj are of course defined. Thus
xj = σ−1

Aj (Xj). Given these functions, the definition
of µAj is just µAj(r) = σAj(PAj ∩ ρ−1(r)).

Without loss of generality, assume that there is a
pattern pk, with pk ∈ Xk and pk 6∈ Yk. Since PAk
contains Xk, the pattern pk must appear as the kth

child of some pattern p = A[p1, . . . , pn] in PF .
There must be matching sets R1 through Rn con-

taining p1 through pn. This is so because PF is closed
under taking subtrees, and because every pattern in
PF must be contained in at least one matching set3.

For 1 ≤ j ≤ n, choose xj = µAj(ρ(Rj)). The
pattern p is in

ρ−1(θA(x1, . . . , xk, . . . , xn))

and is not in

ρ−1(θA(x1, . . . , yk, . . . , xn))

so θA(x1, . . . , xk, . . . , xn) and θA(x1, . . . , yk, . . . , xn)
are not equal.

6 Extension to regular tree pat-
terns

In correspondence, Philip Hatcher ([Hat86]) pointed
out how to add “introduced wildcards” to this algo-
rithm. An introduced wildcard is a wildcard that is
subsumed by some, but not all patterns in PF ; the
patterns subsuming an introduced wildcard are part
of a more general pattern specification. It turns out
that this addition produces an extended algorithm ca-
pable of building tables for automata that recognize
regular tree patterns.

This is an important result; several applications
for tree pattern matching make use of introduced
wildcards and regular tree patterns. Use of intro-
duced wildcards reduces the size of the pattern and
matching sets, and the class of regular tree patterns is
larger and more useful than the simpler class of pat-
terns treated above. Regular tree patterns are used
by Cheng, Omdahl, and Strawn ([COS82]), appear
when Henry’s code generation grammars ([Hen84])
are interpreted as tree patterns ([HC86]), and have
been proposed for use in analysis and optimization
by Jones and Muchnick ([JM81]).

A pattern p subsumes another pattern q (written
p ≥ q) if q always matches when p matches. For
example, all patterns subsume the wildcard ∗. To ex-
tend the algorithm new wildcards and subsumption
relations for those wildcards are introduced to the
pattern specification. For example, one might spec-
ify a linear tree with spine labelled “a” and leaves
labelled “b” with

l ≤
a

�� JJ
b b

3Given a pattern, it is a trivial exercise to construct a tree
that the pattern matches. There must be a matching set for
that tree, so there must be a matching set containing the
pattern.

Page 8

l ≤
a

�� JJ
b l

Wildcard specifications create the isubsumers (for in-
troduced subsumers) relation between wildcards and
patterns. Note that wildcards are also patterns.
Form the transitive closure of isubsumers to get
isubsumers∗. Forming subsumers∗ or subsumers is
not desirable; the structure of matching sets makes
this unnecessary4.

Now consider the reason for union with U in

R = PF ∩

U ∪
⋃

(p1,...,pn)∈MSP

{A[p1, . . . , pn]}

Assuming that ∗ is in U , the union adds to the new
set of matching patterns all wildcards (∗) that match
every tree. That is, ∗ is subsumed by every pattern
in PF , but is not added to the set by forming new
patterns from patterns that match children. To en-
sure that the matching set contains every matching
pattern for some (potential) tree, ∗ is added.

To handle introduced wildcards, then, an addi-
tional step is added to the algorithm. Given R above,
add introduced wildcards to form R′ by

R′ = R ∪
⋃

W ∈ wildcards∧
R ∩ isubsumers∗(W) 6= ∅

{W}

and use R′ in place of R in the rest of the algorithm.
Given this change, the rest of the algorithm functions
correctly.

7 Implementation

The actual implementation of this algorithm is, of
course, much more complicated than the descriptions
here.

A bucket hash table mapping trees to integers im-
plements the set PF . Bit vectors implement subsets
of PF . The sets of sets of pattern (R and SAj) are im-
plemented with bucket hash tables mapping bit vec-
tors to integers. Both tree and bit vector maps simul-
taneously maintain their inverse maps. All iterations
over sets and set products are of course done over the
integers corresponding to the sets and products.

It is not necessary to iterate over all possible rep-
resenter set products when contructing Ri+1 because
tuples in

∏n
j=1 SAj(i−1) have already been visited

once; a second visit will yield the same results as
the first visit. Therefore, the implementation only

4Recall that the matching set M(t) contains all patterns in
PF matching t; if p ≥ q and p ∈ M(t), then q ∈ M(t).

iterates over members of
∏n

j=1 SAji−
∏n

j=1 SAj(i−1).
As new matching sets are discovered, the representer
sets are updated. For each label A and index j the
height of the tallest subpattern is known; when new
matching sets are created containing patterns taller
than this no attempt is made to update SAj because
it will not add any elements.

The compressed tables are constructed as the algo-
rithm iterates over coordinates in

∏n
j=1 SAji. Since

their final size is unknown, the tables must grow dy-
namically.

To reduce the number of table expansions, the ta-
bles are grown at the beginning of each iteration to be
at least as large as the current dimensions of the rep-
resenter sets. This guarantees that the table will not
expand in any dimension more times than the main
loop is iterated. Normally, the tables double in size
when expanded, but at the last iteration (known in
advance because the maximum height of all patterns
is known) the tables only grow as large as needed.

In the extended version of the algorithm it is not
possible to use height to predict the last iteration be-
cause it is not easy to describe the “height” of an in-
troduced wildcard; it depends upon interactions with
other patterns. However, it was observed that probes
into the vector maps are concentrated on a few ele-
ments; an optimization exploiting this reclaimed most
of the lost speed.

The implementation avoids generating trees and
looking them up in PF by precomputing all possi-
ble combinations of subtrees for each label, forming
the trees, looking them up in PF and storing the re-
sult in a table. The size of these tables is limited by
indexing the jth dimension of A’s tree lookup table
by numbers less than the size of PAj . Doing this also
requires an alternate representation for the PAj to
avoid searching through bit vectors.

Attention was paid to other information that could
be precomputed, and to restricting any transforma-
tions on matching sets to newly discovered match-
ing sets. Thus, the implemented algorithm computes
isubsumers∗ before building any matching sets, and
maintains two versions of each matching set. The first
version is “as generated” and contains no introduced
wildcards; it is used to test for new matching sets.
The second version contains introduced wildcards; it
is used for constructing sets in SAji. In general, as
much information as possible is computed or cached
to speed up the algorithm.

Calculation of the µAj index maps is postponed
until the results are output to save space; these maps
are not needed by the algorithm.

It was determined through profiling that a reason-
able amount of time was being spent in memory al-
location; to avoid time and space overhead and to

Page 9

insulate the implementation from potentially ineffi-
cient memory allocators, allocation of bit vectors and
hash buckets is handled by front-end allocators (these
structures are not especially dynamic). Where possi-
ble, scratch storage is allocated once and re-used.

Most of the optimizations were driven by code pro-
files produced by gprof [GKM82]; profiles obtained by
logging memory allocations and measuring hash table
behavior were also useful and occasionally surprising.
No optimization was applied unless it produced a per-
formance improvement on at least one benchmark.

8 Experimental results

Actual runs of this algorithm have demonstrated (on
a few examples) spectacular compression. In fact,
this algorithm was discovered as a way around gener-
ating impossibly large tables for an interpreter5. The
table sizes in figure 15 reflect total number of entries
stored in the tables independent of the amount of
memory used for each entry; typically the index (µ)
maps can be stored using one byte per entry, while
the tables (θ) require entries large enough to hold the
number of matching sets (|R|). The index maps are
frequently very sparse; in many cases trivial compres-
sion techniques should yield substantial reductions in
the space used. The timings in figure 16 reflect the

Figure 15: Table sizes

problem |PF | |R|
∑

|θA|
∑

|µAj |
P4 35 65813 77284 131626
P3 18 277 484 554
VAX.BWL.M 377 779 1958 74784
VAX.B–H.M 746 1267 3807 201453
APL-50 133 145 236 10440

time in seconds spent generating all of the maps (ρ, σ,
and µ) and all of the tables (θ) on a 16 megabyte Sun-
3 with a 16.7 megahertz MC68020 processor, running
under Sun UNIX 3.0 and compiled with the -O flag
to the C compiler6.

Two of the benchmark problems were chosen to
create many matching sets for very little input, and
three were taken from other work. P3 and P4 are
the pathological binary sets of height 3 and 4. A
pathological binary pattern set of height n contains

5Bottom-up tree pattern matching was found to be unsuited
to this application for other reasons; see [O’D85, p.198] for an
explanation.

6UNIX is a trademark of AT & T Bell Laboratories;
MC68020 is trademark of Motorola Corporation; Sun and Sun-
3 are trademarks of Sun Microsystems Inc.

Figure 16: Timings

problem time
P4 115
P3 0.5
VAX.BWL.M 28
VAX.B–H.M 88
APL-50 4

(before creating PF) 2n patterns. Each pattern is a
full binary tree of height n built out of one variety
of binary label. The leaves of each pattern tree i are
all wildcards except for the ith leaf; it is some non-
wildcard leaf label. The set P2 with binary label a
and leaf label b is shown in figure 18. The number of
matching sets for Pn is proportional to 22n

because
there is a tree matched by each combination of the
2n patterns.

APL-50 is the set of APL idioms collected by Cheng
et al for use in idiom-specific optimizations of APL
[COS82]. This set includes one regular pattern (list),
47 binary and unary labels, and the wildcard ∗. The
tallest pattern has height 9. Most of the patterns tend
to be right-linear, reflecting the structure of APL.

VAX.BWL.M is one of Robert Henry’s grammars
for VAX-117 machine code generation [Hen84]. This
set also uses some regular patterns, but the most com-
mon use of introduced wildcards is in pattern fac-

Figure 18: Pattern set P2

a
�� JJ∗ ∗

a
�� JJ

b ∗

a
�� HH

a
�� JJ

b ∗

a
�� JJ∗ ∗

a
�� HH

a
�� JJ∗ b

a
�� JJ∗ ∗

a
�� HH

a
�� JJ∗ ∗

a
�� JJ∗ b

a
�� HH

toring. This reduces the size of the pattern forest,
improves the performance of the table builder, and
makes the machine descriptions easier to read and
write. There are 59 unary and binary labels, 23 leaf
labels and 63 introduced wildcards. The tallest pat-
tern has height 4.

VAX.B–H.M is larger grammar for the VAX-11
(also due to Henry) containing descriptions for the
VAX with all its machine datatypes. It contains 97
unary and binary labels, 39 leaf labels, and 109 in-

7VAX and VAX-11 are trademarks of Digital Equipment
Corporation.

Page 10

Figure 17: Comparison with LALR(1) parser-generators

VAX.BWL.M VAX.B–H.M
method time space time space

tree matching plain 110 78.7 333 212.9
table builder bit-compressed 110 22.9 333 55.1

run-compressed 110 12.4 333 28.4
LALR parser tablegen 341.2 74.4 826.6 118.4
generators yacc 1190.5 57.5

pgs 3217.8 21.2

troduced wildcards. The tallest pattern has height
4.

The index maps take up most of the space used
by the generated tables; fortunately, the index maps
provide ample opportunities for compression.

9 Comparison with other work

9.1 Uncompressed tables

This algorithm performs substantially better than al-
gorithms that first construct uncompressed tables.
This can be seen by noting that the size of the un-
compressed tables is

∑

A∈labels

|R|arity(A)

For the sample pattern sets above this is usually sev-
eral orders of magnitude larger than the size of the
tables and maps from the compressed algorithm, as
shown in figure 19. Table size is measured in number
of entries, not number of bytes.

Figure 19: Compressed and uncompressed table sizes

problem compressed uncompressed ratio
P4 208,910 4,331,350,969 20733
P3 1,038 76,729 73
VAX.BWL.M 76,742 22,470,255 292
VAX.B–H.M 205,260 97,969,508 477
APL-50 10,676 528,815 49

9.2 Henry

In [Hen84], Henry generates LALR(1) parsing
tables for several machine grammars, including
VAX.BWL.M and VAX.BWLFDGH.M. He includes
statistics for the parser-generators tablegen, yacc, and

pgs. In general, the parser-generators produce some-
what smaller tables but have somewhat larger run-
ning times. However, the index maps account for
most of the space used by the result of the compressed
table builder, and no attempt has been made to com-
press these in the tables shown in figures 15, 16 and
19. Two naive compression techniques substantially
reduce the space used to store index maps. In the
first, each map is stored using only as many bits per
element (1, 2, 4, 8, 16, or 32) as are needed to express
the map’s range. In the second, the maps are encoded
into two arrays; one contains the “edges” for runs of
values, and the other contains the values correspond-
ing to those runs. This method is even more effective
than the first at compressing tables, though it is not
as fast at run time. These results are shown in figure
17 (the times and speeds for tablegen, yacc, and pgs
are taken from [Hen84, fig A2.8, p. 259]. All times
are seconds on a VAX-11/750, and space is measured
in kilobytes).

9.3 Hatcher and Christopher

Hatcher and Christopher describe a technique in
[HC86] that works for a similar class of tree pattern
sets annotated with costs. Their method is based on
a bottom-up matcher for simple pattern sets (con-
taining no independent pattern pairs) described in
[HO82], but has been extended to allow some inde-
pendence in the pattern set and the use of intro-
duced wildcards. The cost information allows in-
dependent patterns; when two independent patterns
both match; one is discarded on the basis of its cost.
Because their algorithm uses matching patterns in-
stead of matching sets, it produces tables even smaller
than the method presented here.

It is appropriate to discard independent matching
patterns in code generation, but this is not true in
all pattern-matching applications. In some situations
their algorithm must discard matching patterns even
when it is not justified by cost, or require the user to
modify the pattern set. When these things are not

Page 11

acceptable the new algorithm is more appropriate. It
also appears that it is possible to modify the method
presented here to incorporate cost information and
reduce table sizes by discarding some matching sets
without significantly increasing the processing time,
thus providing the best of both methods.

9.4 Cheng, Omdahl, and Strawn

Cheng, Omdahl, and Strawn construct compressed
tables for regular tree pattern forests in [COS82].
Their technique is based on NFA construction, con-
version to DFA form, and minimization of the DFA.
I believe that the resulting tables are equivalent to
those constructed by this paper’s method, but their
technique is much slower. For example, the method
presented here produced tables for 50 APL idioms in
4 seconds on a Sun 3, while their method used 1000
seconds on a NASCO AS/68.

10 Still undone

The extended algorithm is no longer optimal, and I
suspect that producing optimal tables for regular tree
patterns will be much harder. In certain situations it
is possible to introduce intersection and complement
operations on introduced wildcards, providing a more
powerful notation for describing regular tree patterns.
It also appears that introducing costs will be a fairly
straightforward operation. These things are discussed
in the appendix. Though the new algorithm is much
more efficient than the uncompressed algorithm, good
time and space bounds are even harder to determine.

11 Conclusions

The improved algorithm makes use of a bottom-up
tree pattern matcher practical in many situations
where it previously was not practical. This is good,
because bottom-up pattern matchers are very gen-
eral, run in time proportional to the size of the input
(containing pattern instances) tree, and may be ap-
plied to input that is not tree-like.

12 Acknowledgements

Philip Hatcher re-implemented the algorithm from an
early description, discovered a bug, provided versions
of Henry’s grammars suitable for use in tree pattern
matching, and pointed out that this algorithm could
be extended to handle introduced wildcards; I am

8NASCO and AS/6 are probably trademarks of National
Advanced Systems.

very grateful for his help. Robert Henry helped me
understand the code generation grammars. Finally,
discussion with many people here at Rice helped me
refine my description of the algorithm.

References

[COS82] Feng Cheng, Scott Omdahl, and George
Strawn. Idiom matching: An optimization
technique for an APL compiler. Technical
report, Iowa State University, 1982.

[GKM82] S. L. Graham, P. B. Kessler, , and M. K.
McKusick. gprof: A call graph execution
profiler. In SIGPLAN Symposium on Com-
piler Construction, pages 120–126, 1982.

[Hat86] Philip Hatcher. correspondence, October
1986.

[HC86] Philip J. Hatcher and Thomas W. Christo-
pher. High quality code generation via
bottom-up tree pattern matching. In Conf.
Record of the Thirteenth Annual ACM
Symposium on Principles of Programming
Languages, pages 119–130, 1986.

[Hen84] Robert Rettig Henry. Graham-glanville
code generators. Technical Report
UCB/CSD 84/184, University of Califor-
nia,Berkeley, 1984.

[Hen86] Robert Henry. correspondence, October
1986.

[HO82] Christoph Hoffmann and Michael J.
O’Donnell. Pattern matching in trees.
Journal of the ACM, pages 68–95, 1982.

[JM81] Neil D. Jones and Steven S. Muchnick.
Flow analysis and optimization of LISP-
like structures. In Steven S. Muchnick and
Neil D. Jones, editors, Program Flow Anal-
ysis: Theory and Applications, pages 102–
131. Prentice-Hall, 1981.

[Kro75] Hans Kron. Tree Templates and Subtree
Transformational Grammars. PhD thesis,
University of California, Santa Cruz, 1975.

[O’D85] Michael J. O’Donnell. Equational Logic
as a Programming Language. MIT Press,
1985.

[PL86] Eduardo Pelegri-Llopart. correspondence,
November 1986.

Page 12

A Notes on further extensions

A.1 Adding intersection and comple-
ment

To do these quickly, it must be possible to compute
a partial dependence order on introduced wildcards
and patterns. One wildcard depends upon a pattern
if it is subsumed by the pattern, the pattern’s com-
plement, or an intersection in which the pattern is a
member. A topological sort of the partial order gives
the correct order to test for subsumption of wildcards
when a new set of patterns has been generated. If no
partial order exists, then the subsumption relations
are cyclic and their solution is too expensive.

It is possible to relax the restriction on the par-
tial order a little bit. Intersection and union are
monotonic operations (adding a pattern to a match-
ing set does not exclude one that is already in the
set), but complement is not. The dependence graph
among wildcards and patterns may contain cycles,
but these must be monotonic (complement free). For
each matching set the algorithm walks through the
dependence graph adding patterns until the process
converges. I think it is possible to massage the graph
into a form that may be more quickly traversed at set
generation time, but I am not certain on the details
(collapse along subsuming edges? break cycles?).

A.2 Adding cost information to dis-
card patterns

This is simple enough for patterns that do not appear
as subtrees of other patterns, but more difficult for
subpatterns. If two patterns p and q satisfy

1. cost(p) ≤ cost(q)

2. for every label A and child index j, p 6∈ PAj

3. for every label A and child index j, q 6∈ PAj

then whenever p and q both match, q may be dis-
carded from the matching set.

For subpatterns the problem is more difficult be-
cause subpatterns may appear in different contexts.
Suppose that costs have been assigned to the patterns
in P3 in the way shown in figure 20. Any two height
two patterns (one b and three ∗’s) must both remain
in a matching set because one pattern is cheaper in
the left-son-of-root context and the other pattern is
cheaper in the right-son-of-root context. However,
given three height two patterns it is always possible
to discard one. It seems that the correct, though per-
haps expensive, approach is to discard patterns in the
intersection over contexts of discarded patterns.

Figure 20: P3 with costs

pattern leaves cost
b∗∗∗ ∗∗∗∗ 1
∗b∗∗ ∗∗∗∗ 2
∗∗b∗ ∗∗∗∗ 3
∗∗∗b ∗∗∗∗ 4
∗∗∗∗b∗∗∗ 8
∗∗∗∗ ∗b∗∗ 7
∗∗∗∗ ∗∗b∗ 6
∗∗∗∗ ∗∗∗b 5

To do this, define a context as a pair (tree, path)
where path is a path to a node in tree. The node thus
reached is (say) a wildcard. The subtree at the node is
unimportant except for purposes of comparison with
other trees. The purpose of contexts is to determine
where patterns might appear and the costs that a
pattern might generate in such a context; a pattern
p appears in a context c = (tree, path) if there is a
pattern q in PF such that q is equal to tree with the
node at path replaced by p. This same pattern q has
an associated cost; this is the cost of p in the context
c.

When generating patterns, maintain two sets of
sets of patterns. The first is the “unfiltered” match-
ing sets; this contains sets of patterns that result from
the simple (no wildcards) phase of the algorithm for
generating new matching sets. Doing this acts as a
filter to reduce the number of sets given the more
expensive treatment that follows. Given a new un-
filtered set, add all subsumed wildcards (including
those resulting from intersection and complement op-
erations). Build an array indexed by context contain-
ing pairs (cost , patterns). The pair at index c con-
tains (as first member) the smallest cost obtained by
combining patterns in the matching set with c and
(as second member) the set of patterns achieving this
cost in context c. After this array is filled, the actual
matching set is obtained by taking the union of pat-
terns over all “significant” (see non-optimality result
below) contexts. The representer sets are obtained by
taking the union of patterns over all contexts associ-
ated with label A and child j. Doing this can reduce
the number of unfiltered matching sets formed at later
stages of the algorithm. Each “unfiltered” set will
of course be associated with the resulting “actual”
matching set.

Doing this will take more time for each matching
set, but will ultimately reduce the table sizes. It may
construct significantly fewer unfiltered matching sets,
thus reducing the total time needed to construct ta-
bles.

Page 13

B Application to non-tree in-
put

A bottom-up pattern matcher can be applied to
DAGs or general graphs. To process a DAG ef-
ficiently, topologically sort the nodes and compute
the matching sets in the topological order. This will
clearly give the correct matching sets for each node.
To process a general graph, each node is initially as-
signed its height 0 matching set; either {∗}, {}, or
{A[], ∗}. Given height zero matching sets, matching
sets containing taller patterns are computed for each
node based on the matching sets of the node’s chil-
dren (successors). If the pattern set is finite (no reg-
ular patterns) then this process will converge as soon
as the height of the tallest pattern has been reached.
If there are regular patterns, then the process will still
converge, though the bound on number of iterations
is not as good.

Use of the algorithm on graphs points brings up
the problem of fixed points. The tables produced by
the algorithm in this paper will find smallest fixed
points of pattern sets. This is good for trees and
DAGs, because these are the only pattern sets that
will be produced and this restriction produces smaller
tables. If cycles are allowed, however, it is possible
to construct a graph with more than one pattern set
fixed point. For example, suppose the pattern set is

l ≤
a

l
?

and the input graph is

a��
��

In this case, the smallest fixed point of the input tree
is the empty set. However, the set {L} is also a fixed
point.

C Non-optimality of extension
to regular tree patterns

Eduardo Pelegri-Llopart pointed out that the ex-
tension to regular trees does not yield optimal
automata[PL86]. The extension introduces naming,
and it is possible through the use of names to say
“these two patterns will have exactly the same ef-
fect”. This leads to duplicated columns in the ta-
bles that are not detected by the equivalence-class
method described above. For example, suppose that
the two patterns A[B, ∗] and A[∗, B] both subsume

the wildcard foo, but appear nowhere else in the pat-
tern specification. The algorithm above will make a
distinction between matching sets including one pat-
tern, the other pattern, and both patterns. However,
those sets can index equal subtables.

This result can be improved (made optimal?) by
using or adapting the modification to incorporate
costs. If a pattern appears only on the right hand side
of a subsumption relation, then it should be thrown
out of any matching set after all subsumed patterns
have been added. Subsumed patterns can be treated
in the same way; if they do not identify an interest-
ing pattern instance or appear as part of a pattern,
then they should be thrown out of matching sets. I
do not know if this produces optimal sets; I suspect
not, because names can be used in trickier ways.

Page 14

