
Abstract

This paper describes ways that storage allocation op-
timization, though “correct”, can convert a running
program into one that fails. A general “safety con-
dition” is proposed and applied to some existing and
proposed storage allocation optimizations. These are
shown to be unsafe or not general. Application of the
safety condition yields several classes of storage allo-
cations that may safely be optimized to stack alloca-
tions. For one useful class of allocations optimization
is shown to be NP-complete.
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1 Introduction

Optimizations that convert heap allocations into
stack storage allocations have been described in sev-
eral papers and used in several compilers [BGS82,
KKR+86, MJ76, Sch75]. These optimizations are ex-
pected to save time because allocation and deallo-
cation from a stack is usually faster than either al-
location and explicit deallocation or allocation and
garbage-collected reclamation1. Furthermore, stack
allocation improves locality of reference and gener-
ates addresses that will not change and need not be
known to the garbage collector. This can permit ad-
ditional optimizations to take place.

Improved lifetime analysis [Rug87, Cha87, RM88]
and the growing use of garbage collection in program-
ming languages (for example, Cedar Mesa, Lisp, ML,
Modula-2+, Russell, Smalltalk) make it likely that
these optimizations will appear in compilers. Unfor-
tunately, unrestricted application of storage alloca-
tion optimizations is unsafe; these optimizations can
convert programs that run well into programs that
fail. Existing strategies for applying storage alloca-
tion optimizations are either over-restrictive or un-
safe. This paper describes a safety condition for stor-
age allocation optimizations and presents a strategy
that is both general and safe.

1This is clearly true for a non-compacting collector.

0

2 Run-time model

The storage allocation optimizations discussed here
assume single-threaded execution with an area of
memory managed by a garbage collector and an area
of memory managed as a stack. The stack is not
garbage collected; this means that allocation and
deallocation from the stack are guaranteed to be fast
and that addresses of objects allocated on the stack
will not change, but this also means that using all of
the memory available for storing the stack is a fatal
error. It is also assumed that stack space and heap
space may be traded for each other, or that stack
space is very large. At certain points in the program
“new” (unaliased) storage is obtained from the heap;
I will call these points allocation sites.

In the absence of interprocedural optimizations
[Mur84] activation records are removed from the stack
upon procedure exit. Within a procedure activation
the allocation of additional storage from the stack
is permitted; this storage is implicitly freed when
the procedure is no longer active. This model does
not necessarily prevent the use of coroutines, concur-
rency, continuations, or closures, but it is necessary
that “stack” allocation and deallocation be fast with
respect to heap allocation and garbage collection in
order to make these optimizations profitable. This is
not always true, but it is true often enough that these
optimizations are interesting.

In describing optimizations and strategies I will as-
sume the existence of some interprocedural informa-
tion, but I will try to limit this to general-purpose in-
formation (i.e., call graphs and information about as-
signment of parameters to global variables and func-
tion results).

3 Allocation optimizations

The use of storage allocation optimizations has been
proposed by Schwartz [Sch75], Muchnick and Jones
[MJ76, MJ81], Barth [Bar77], Ruggieri [Rug87], and
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Chase [Cha87], and implemented in compilers for Lisp
[BGS82, Ste77], Scheme [Ste78, KKR+86], and Rus-
sell [BD85].

In Lisp compilers the optimization is applied to
function closures and to floating point numbers. To
allow the first-class treatment of functions activation
records must be (in the most general case) allocated
on the heap. In most cases, however, this general
treatment is not necessary and the cost of heap allo-
cation can be avoided by allocating activation records
on a stack. For example, if a function F does not lex-
ically contain any function-generating (lambda) ex-
pressions then F ’s activation record may be stack-
allocated.

An alternate implementation strategy heap-
allocates cells for variables and places pointers to
these cells within activation records. A closure for
a function inheriting lexical names contains pointers
to the objects bound to the names instead of a pointer
to the activation record which binds the names. Us-
ing this technique activation records are always stack-
allocated but variables bound in the record may need
to be heap-allocated and creation of a closure can be
more expensive. If a function F contains no function-
generating expressions then the variables bound in F
need not be heap-allocated. Figure 1 shows two pos-
sible implementations of the activation record for a
function F returning a closure.

Lisp implementations often represent floating-point
numbers as pointers to floating point numbers in ma-
chine representation2. Doing this for all floating point
data results in slow floating point performance. The
S-1 Common Lisp compiler avoids this problem by
heap-allocating floating point numbers only when (1)
they are returned as a result from a (user) function
or (2) they are accessible from a cons cell. If a non-
heap number appears only in arithmetic operations
then no memory needs to be allocated at all; if it
is passed as a parameter to a function3 or used in a
context where its tag bits might be examined then
memory is stack-allocated for it.

For the SETL compiler Schwartz proposed a stack
allocation strategy based on an interval partition of
a program’s control flow graph. An allocation site A
within an interval I may be converted to a stack al-
location if the lifetime of the storage does not escape
I. Because intervals are single-entry and disjoint it is
easy to record the stack height at interval entry and

2This is necessary when portions of each machine word on
an untagged architecture are set aside for tag bits. Float-
ing point formats typically use all the bits in a machine
word, including those intended for use as tag bits by a Lisp
implementation.

3A function storing one of its parameters into a cons cell or
returning the parameter must ensure that it has been allocated
from the heap.

F (a) =f
let b = 3.14159265
let G(x) = a + x
. . .
return c
}
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code for G �

���-

Lexical link from closure to activation record

G
b
a

a
x

XXXz

���:
-



� JĴ
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Figure 1: Implementations of a closure-returning
function

reset it on edges leaving the interval. Here the allo-
cation optimization is applied to all types of storage
allocation, not just numbers.

Barth’s technique does not shift allocation to the
stack, but does remove reference counting operations
and introduce explicit deallocation of storage. This is
somewhat less efficient than stack allocation, though
there is no reason that his work could not be adapted
to replace heap allocations and deallocations with
stack operations.

Ruggieri proposes a “local heap” for each activa-
tion record for storage whose lifetime is contained
within the function activation (that is, the storage
does not implement any part of any object assigned
into a global variable or reference parameter or re-
turned as a result). At procedure exit the associated
heap is guaranteed to contain no live storage; this
technique appears efficient if garbage collection of lo-
cal heaps can be avoided.
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4 Safety

The safety condition is just this: “optimization
should not convert a program that runs robustly into
one that does not.” By “running robustly” I mean
that the amount of memory available to the program
is a good fraction larger than what the program actu-
ally needs; thus, slightly perturbing the storage needs
of the program will not cause it to run out of memory.
Note that a program running in the smallest possible
amount of memory will need to collect garbage very
frequently and thus run very slowly; thus, such pro-
grams are “not robust”.

The stack allocation of numbers in Lisp4 and the
SETL interval allocation strategy are both unsafe.
They both fail the test (in certain situations) by
allocating on the stack many objects that become
inactive5 while live objects are still on top of the
stack. If the optimizations are not applied then
the shorter-lived objects are allocated from the heap
where their storage can be reused if this is necessary.

A loop containing a short-lived allocation is suffi-
cient to demonstrate this behavior. The loop below
will iterate N times, and each iteration will allocate
memory for a. If memory for a is stack-allocated then
each iteration will increase the size of the stack. For
large enough N the optimized program will fail, but
a program allocating memory for a from a garbage-
collected heap will only pause to collect garbage. Be-
cause (for this example) the storage allocated for a is
not live from one iteration of the loop to the next it
is clear that there will in fact be garbage to collect
and that the program may continue after collection.

for i = 1 to N do
a ← new(. . .)
. . .
end

The Lisp allocation of numbers can also interfere
with tail-call elimination. Performing the optimiza-
tion can prevent the elimination of a tail-call if the
caller is responsible for popping the number off of its
stack, or it can increase the size of the stack frame
reused by the called routine (or it can increase the
size of the number stack, if a separate stack is used).
Performing the stack-allocation optimization in either
case removes one of the principal benefits of tail-call
elimination: the ability to write a recursive function
that runs in constant space.

4As described in the literature, though not in fact. In a loop
stack allocations for floating point temporaries are invariant
and can be hoisted out of the loop [Ste88].

5I will use the term “inactive” to mean “not reachable via
a chain of pointers and containment from the root registers”.
Note that “inactive” is not a antonym for the flow analysis
term “live”.

Both Barth and Ruggieri’s techniques are safe;
Barth’s approach does not use the stack and reclaims
storage as soon as this is possible, and Ruggieri’s ap-
proach both limits the stack space used and collects
garbage within the stack, and falls backs to heap al-
location if all else fails.

To safely convert a heap allocation into a stack al-
location a compiler must ensure that (among other
things) doing so will not lead to “excessive” storage
waste. What is “excessive” depends upon the run-
time environment. If stack and heap storage may be
traded for each other, then it suffices to guarantee
that the fraction of wasted stack storage never ex-
ceeds some bound; this is so because most garbage
collection algorithms waste a certain fraction of the
storage available. It is difficult for a compiler to place
a bound on the fraction of storage wasted, however,
because this requires both detailed knowledge of allo-
cation sizes and knowledge about what storage must
be active. In the example below allocations for data
stored into the array a will remain live throughout
the loop’s execution but allocations for data stored
into b will only last until the next assignment to b. If
both allocations are performed on the stack then the
percentage of the stack wasted in this loop depends
on the relative sizes of the two allocations.

for i = 1 to N do
a[i] ← new(. . .)
b ← new(. . .)
. . .
end

There are certain special cases where it is not difficult
to bound the fraction of stack storage wasted; these
will described later in the paper. A more conservative
and tractable approach is to bound the amount (num-
ber of bytes) of wasted storage. This can be done
using may information, and does not require detailed
knowledge of allocation sizes. With appropriate as-
sumptions it suffices to guarantee that a bound exists,
if it is not known.

Note that in either case secondary waste may ap-
pear. That is, pointer-containing data allocated on
the stack can prevent the reclamation of some heap
storage. If the stack-allocated pointers are inactive,
and their (heap-allocated) referents are otherwise in-
active, then (many) garbage collectors will be unable
to reclaim the referents even though they are heap-
allocated. Secondary waste presents a problem be-
cause it can be very difficult to determine at compile
time how much storage is actually wasted.

There are cases, however, where the compiler can
determine that secondary waste is not possible. If
it is possible to (safely) stack allocate all of the stack
pointer referents, then there is nothing allocated from
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the heap to waste. If the lifetime of a referent can
be shown to be longer than the stack residence of a
pointer, then there will be no secondary waste. This
can happen when the referent is returned as (part
of) a function result or assigned to (part of) a global
variable or a reference parameter.

A better way to avoid this problem is to design the
collector so that it only examines the fixed portions of
each stack frame (that is, stack-allocated data is only
examined if it is accessible from a variable or tem-
porary result in some stack frame). It appears that
this technique will be effective, so I will ignore the
problem of secondary waste in the rest of the paper.

5 One safe strategy

This strategy requires certain simplifying assump-
tions:

1. each allocation is much smaller than the total
amount of memory available;

2. non-recursive call chains are not especially deep;

3. the number of allocation sites in a procedure is
not extremely large.

Taken together, these assumptions imply (vaguely)
that the sum of the sizes of the allocations (counting
only once per site) is not larger than the size of the
stack. Another interpretation of this is “it’s safe to
compile Fortran”. Given a call graph, a compiler can
verify that assumptions two and three are correct.
The first assumption, unfortunately, cannot always
be verified at compile-time, but I will claim that it
is reasonable. If short-lived, large allocations occur
often, they cause frequent garbage collection, and in
a non-compacting collector they can cause fragmen-
tation problems. It is also possible, though not as
desirable, to check the size of objects at allocation
sites and place the large ones in the heap6. Given
these assumptions, safety may be expressed in terms
of number of objects allocated instead of number of
bytes allocated.

For each allocation site in a program that may use
the stack, the strategy ensures either that at most
one instance of the allocation is ever stack-allocated,
or that every instance stack-allocated (possibly ex-
cepting the last one) is active. This limits the num-
ber of wasted objects to at most one per allocation
site, which is assumed to be an acceptable amount of
waste.

6This is less desirable in a compacting collector because the
possibility that the object’s address may change can prevent
some other optimizations.

5.1 Single-instance allocations

If the stack is popped on procedure exit, then many
sites will never have more than one object allocated
on the stack at a time. In non-recursive procedures
(eligible) allocation sites that are not contained in any
strongly connected region of the control flow graph
may use the stack because the allocation can execute
at most once before it is implicitly freed by exit from
the procedure. In this example, storage for a may be
stack-allocated because its allocation is not in a loop
and f is not recursive (it is assumed that the data in
a is not assigned to a global variable or to c; otherwise
stack allocation would be incorrect).

f(x) = f
let a = new. . .
. . . no recursive calls
return c
g

The strategy also allows stack-allocation in portions
of recursive procedures that cannot flow into a recur-
sive call; allocation in this situation is clearly single-
instance.

5.2 Multiple-instance allocations

Multiple-instance allocations include those in recur-
sive procedures on paths to recursive calls and those
occurring within loops. When almost all allocations
performed at a site are guaranteed to be live within a
procedure activation it is safe to transform the allo-
cation into a stack allocation; such sites will be called
long allocation sites. If a multiple-instance allocation
can be transformed into a single-instance allocation,
then (after that transformation) stack allocation is
safe; such sites will be called short allocation sites. In
either case, an allocation site must satisfy all safety
constraints that apply in order to be stack-allocated.

5.2.1 . . . in recursive procedures

Allocations that are (definitely) live across a recur-
sive call may be safely stack-allocated. This is so
because all instances of the allocation are active, ex-
cept possibly for the one in the most recent procedure
activation. In this example storage for a is live across
the recursive call so it may safely be stack-allocated.

f(x) = f
let a = new. . .
. . . f(y) . . .
. . . a . . .
g

Allocations that are not live into a recursive call
may also be transformed into single-instance alloca-
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tions. The model for this transformation is the intro-
duction of a non-recursive procedure replacing code
leading up to the recursive call; allocations in the in-
troduced procedure satisfying safety and correctness
constraints may be stack-allocated. In practice this
is accomplished by identifying allocations which are
not live into the call and which are performed after
all allocations that are live into the call. The stack
pointer is saved, the allocations (and associated com-
putations) occur, and the stack pointer is restored
before the call.

It may not be safe to stack-allocate objects that are
live into but not across a recursive call. With detailed
interprocedural analysis it may be possible to discover
that all such objects are live up to a point within a
called procedure and that the stack is only popped
from that point on, but such analysis is beyond the
scope of this paper. Lacking such analysis, a compiler
cannot stack-allocate storage that is live into but not
across a recursive call because it can derive no bound
on the number of wasted objects.

In this example d may safely be stack-allocated if it
is freed (i.e., popped off the stack) before the recursive
call to f ; b may be safely stack-allocated because b is
live across the call; c may not be safely stack-allocated
because c is live into the call but not across it; and
a may not be safely stack-allocated even though a’s
lifetime does not extend into the call because b must
be freed before a can be freed and b is used after the
call.

f(x, y) = f
let a = new. . .
let b = new. . .
let c = new. . .
let d = new. . .
. . . f(b, c) . . .
. . . b . . .
g

Recursion can interfere with other otherwise safe
stack-allocation techniques; these problems will be
pointed out where they occur below. Some compilers
do stack allocate objects into recursive calls [BGS82],
but only when the objects are known to be small (ma-
chine floating point numbers) when compared to an
activation record.

5.2.2 . . . within loops

I assume the following model for allocation optimiza-
tion within loops. A loop is a single-entry strongly
connected region with no embedded cycles that do
not contain the root node (an interval, in a reducible
flowgraph). When loops are nested the inner loop(s)
will be treated as a single node in the outer loop. In

optimization loop invariant computations and initial-
izations for strength-reduced calculations are placed
in a “landing pad” prepended to the loop entry
[CLZ86, ACK81] and all edges into the loop from
outside the loop are redirected to this landing pad.
Storage allocation optimization will make use of this
landing pad for some allocations and to record the
stack height upon entry to the loop.

@
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initializations
record stack height

?

?

��	 @@R

��	@@R � �
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� �

��

Incoming edges

Landing pad

Loop

Original entry node

Figure 2: Typical loop with landing pad

When all storage allocated at a site within a loop
is guaranteed to be live until loop exit then that site’s
allocation may be performed on the stack. Guaran-
teeing safety of stack allocation in this situation is
more difficult because it more easily interferes with
other constraints and because the analysis required is
difficult (showing that storage must be live requires
proof of liveness over all paths). Suppose a loop L
contains a long allocation site A, and suppose there
is a recursive call C after L. At C, it is necessary ei-
ther that all storage allocated at A is live (and will be
live past C) or that all storage allocated at A is dead.
If liveness or deadness of all objects allocated at A
cannot be guaranteed by the compiler, then stack al-
location at A is potentially unsafe. The analysis is
especially difficult because the compiler must prove
not only that an instance must be live, but that all
instances must be live. This is difficult because the
multiple instances will necessarily be referenced from
an array or linked data structure.

The most general condition for a loop allocation
site to be short is that its lifetime within the loop
cannot contain cycles passing through the allocation
site. When this is the case the stack height can be
reset to its entry height when traversing edges to the
allocation site. Notice that the stack is not necessarily
reset on edges back to the header node, and it is not
reset at loop exit. This may leave one instance of the
allocation on the stack after executing the loop, but
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this is safe by assumption and less restrictive. If the
allocation size is loop-invariant then the allocation
may be performed in the landing pad. This avoids
the costs of adjusting the stack.

Unfortunately, if there is more than one short al-
location site or a recursive procedure call within the
loop then safe optimization is not so simple. If there
is a recursive call in the loop, but not in the live range
of a short allocation with loop-invariant size then it
may be unsafe (pedantically speaking) to move the
allocation into the landing pad. The difficulty arises
because the storage is allocated before it is used; N
recursive calls lead to N instances of unused storage
reserved for future use7; make N large enough and
available storage is exhausted. This problem is not
helped by using heap instead of stack allocation in
the landing pad; the storage is still reserved and can
consume all of the heap if N is large enough. The
example below demonstrates this problem.

f(x) = f
for i ← 1 to N f

if . . . then f(y)
a ← really big allocation
g

g
When there is more than one short allocation site

in a loop it is necessary to find a set of edges C (for
cut) in the loop that is not in the live range of any
short allocation site and that cuts all paths from the
union of the live ranges to the allocation sites. Such
a set may not exist; when this is the case finding
the smallest number of sites to heap allocate that
will allow (safe) stack allocation of the rest is an NP-
complete problem (proof in appendix). The prob-
lem remains NP-complete if a minimum cost acyclic
union of rooted acyclic lifetimes is sought (proof in
appendix). It is not known (to the author, at this

7Again, I am ignoring the size of the allocations and assum-
ing the worst.

time) if there is a tractable algorithm for finding a
minimum cost union of rooted acyclic lifetimes that
contains no cycles through allocation sites. Notice
also that recursive calls within the loop can interfere
with this strategy for stack storage allocation because
only some of the stack-allocated storage might be live
at the call site.

6 Variations

6.1 Ineligible allocations

Short loop allocations are useful even when the life-
times escape the containing procedure. Ordinarily
such sites are not eligible for stack allocation, but
if all references to the storage allocated there can
be discovered at compile time then it is possible to
copy the object into the heap after exit from the loop.
This avoids the time and space cost of heap alloca-
tion within the loop. If the allocation size is loop-
invariant (and there are no recursive procedure calls
within the loop) then in-loop allocation and copying
may be avoided altogether by performing a heap al-
location in the landing pad.

6.2 Nested loops

When loops are nested the inner loops are treated as
single nodes in the analysis of the outer loop and all
allocations escaping the inner loop are treated as a
single allocation in the outer loop (that is, the appar-
ent lifetime in the outer loop of storage from sites in
the inner loop is the union of the sites’ actual life-
times). It is possible for an allocation in the inner
loop to be long or short in both loops, short in the
inner but long in the outer, or long in the inner and
short in the outer. All three of these cases are han-
dled well by the approach described in the previous
section. Examples of the four combinations possible
are shown in figure 4.

When an allocation site is short in both loops that
means that its lifetime in the inner loop contains no
cycles back to the site and the lifetime in the outer
loop also contains no cycles back to the inner loop
(which is treated as a single node in that analysis).
Each loop has a landing pad in which the stack height
at loop entry is recorded and the stack is reset to
this height when cutting edges (in either loop) are
traversed.

For an allocation site to be short in an inner loop
and long in an outer loop its lifetime in the inner
loop must contain no cycles back to the site, escape
the inner loop, and definitely escape the outer loop.
To maintain safety other storage which escapes the
inner loop must also definitely escape the outer loop.
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Here the allocation
for b is long in both
loops.

a ← new array
for i ← 1 to n f

for j ← 1 to m f
b ← new
a[i, j] ← b
g

g

Here the allocation
for b is short in the
inner loop but long
in the outer loop.

a ← new array
for i ← 1 to n f

loop f
b ← new
g

a[i] ← b
g

Here the allocation
for b is long in the in-
ner loop but short in
the outer loop.

for i ← 1 to n f
a ← new array
loop f

b ← new
a[i] ← b
g

g

Here the allocation
for b is short in both
loops.

for i ← 1 to n f
loop f

b ← new
g

. . . b . . .
g

Figure 4: Nested allocations

In the outer loop the stack height is not reset because
the memory allocated in the inner loop is treated as
a long allocation, but in the inner loop the stack is
reset to its entry height each time a cutting edge is
traversed (note that the stack entry height is higher
each time the inner loop is entered from the outer
loop).

When an allocation is long in the inner loop it ap-
pears as a single large allocation to the outer loop. If
it is also long in the outer loop then the stack grows
in both inner and outer loops. If it is short in the
outer loop then the stack is reset to its (outer loop)
entry height each time before entering the inner loop.

6.3 Combined short and long alloca-
tions

A difficulty arises when both short and long alloca-
tions are in the same loop or recursive subroutine.

Safe optimization of a short allocation site must re-
set the stack before performing another allocation at
that site, but this is not possible if a long allocation
(in the same loop nesting level or subroutine) occurs
before the short allocation can be freed. Without in-
formation about the relative sizes of the allocations
it is unsafe to optimize the short allocation in this
situation.

When both a short and long allocation are in a loop
it is necessary to keep two copies of the stack entry
height; one determines the beginning of the long allo-
cation (for later popping, if it is not implicitly popped
at procedure exit) and the other determines the cur-
rent reset height for short allocations. This second
pointer is needed because the stack resets at cutting
edges must only free short allocations, not long ones.
It is unlikely that the compiler will be able to de-
termine the size of a short allocation within a loop
because if the size is constant, then it is also loop
invariant and the allocation will be moved into the
loop’s landing pad (unless there is interference with
recursive calls). Therefore, in loops containing long
and short allocation sites a run-time check is neces-
sary to prevent excess waste. If the size of the long
allocation is known then the short allocation can be
checked to ensure that it is not too large (allocating
on the heap if it is). If the size of the long allocation
is unknown at compile time then that size must be
checked. If the allocation is not large enough com-
pared to the storage used for short allocations in the
latest iteration of the loop8, then the storage must be
obtained from the heap. When storage is obtained
from the heap the reset stack height is not increased
in order that the short allocations currently on top of
the stack will be freed when the next cutting edge is
traversed. Figure 5 shows the initializations and run
time checks for a loop containing a long and a short
allocation.

Combined long and short allocations in recursive
subroutines cause problems. Overlap among short
allocations is not a problem because all short allo-
cations may be freed before a recursive call. Long
allocations, however, may span arbitrary portions of
the subroutine. Thus, they may interfere with short
allocations and other long allocations. An ad hoc
method for dealing with this is to only attempt to
stack allocate long allocations that are live until exit
from the subroutine; this imposes a stack discipline
on the long allocations to prevent them from inter-
fering with each other. Overlapping short allocations
are then handled with the run-time checks used in
loops.

8A good check for 50% waste is to compare the requested
size of the long allocation with the difference between the cur-
rent stack height and the current stack reset height.
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In the landing pad reset ptr ← stack ptr
base ptr ← stack ptr

At the short allocation
(a ← new(size))

stack ptr ← reset ptr
a ← stack ptr
stack ptr ← stack ptr + size

At the long allocation
(b ← new(size))

if size > stack ptr − reset ptr
then f

b ← stack ptr
stack ptr ← stack ptr + size
reset ptr ← stack ptr
g

else f
b ← heap allocation(size)
g

Figure 5: Run-time safety checks in a loop

6.4 Ignoring recursion

In many cases the problems caused by allocations that
are not live across a recursive call or are trapped be-
fore a recursive call are more theoretical than practi-
cal. Most language implementations do not remove or
null out or otherwise identify variables that become
dead before exit from a subroutine. This means that
a garbage collector will treat them as active and not
collect the storage which they use, even though it
could safely do so.

As long as the safety goal for allocation optimiza-
tions is to do no worse than an unoptimized imple-
mentation it is perfectly safe to stack allocate in this
situation. Such a program, optimized, may waste
stack space, but unoptimized it will waste heap space.
An exception to this occurs when linked data struc-
tures are analyzed and portions are determined to
be eligible for stack allocation. If such a structure is
modified, then it is possible for all references to the
portion to be lost and it becomes collectible. If the
analysis for allocation optimization is this ambitious,
then a call graph is necessary for safe, effective op-
timization. Interprocedural information will also im-
prove the effectiveness of such an optimizer because
subroutines are otherwise assumed to modify their
parameters and global variables.

The other choice is to produce an implementation
that is more robust than an unoptimized implementa-
tion. Here, storage references that are certainly dead
across a recursive call can be removed before the call.
This can improve the effectiveness of the garbage col-
lector, though a small overhead per recursive call is

imposed.

7 Putting it all together

This collection of details and interdependent rules
needs to be converted into an algorithm if it is to
be of any use in a compiler (or if it is to be com-
pared to other techniques). It is also useful to note
which rules require analysis so global or hard that it
likely to be unavailable, since there is little point in
the compiler asking unanswerable questions. So, here
is one list of steps:

1. Identify loops and nested loops in the program’s
control flow graph (interval analysis is suitable
for this if the graph is reducible).

2. Identify recursive call sites if the call graph is
available (if not, then assume that all calls are
recursive).

3. Determine storage lifetimes (using algorithms of
Schwartz, Ruggieri, or Chase) and eligible allo-
cations.

4. Find loops containing no recursive calls. In
these move all loop-invariant single-instance al-
locations into the appropriate landing pads.

5. Determine short allocations. In this context a
“short” allocation is one whose lifetime does not
extend into a recursive call and contains no edges
back to the allocation site.

6. Stack allocate short allocations from the inside
out. Those most deeply nested in loops are re-
garded as able to generate the most garbage and
consume the most time in allocation, and thus
are the most important to perform on the stack.
Conflicts (unions of allocation lifetimes contain-
ing cycles through allocation sites) must be re-
solved in an ad hoc manner since optimal solu-
tion is intractable. Insert stack resets on cutting
edges and before recursive calls. In the case of
overlapping short lifetimes it is necessary to ob-
serve LIFO order when freeing storage, but be-
cause all allocations are short it is guaranteed
that this will be possible because no short al-
locations are live at recursive call sites. (Care
must be taken when an allocation is live into a
loop containing a recursive call site; a set of cut-
ting edges consistent both with the allocations
in the loop and the allocation outside the loop
must be found (it will exist) and the reset stack
height will be chosen so that the outer allocation
is freed the first time a cutting edge is traversed.)
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7. Find remaining allocations of small constant size
with lifetimes that do not include edges back to
the allocation site and that do not extend into
a recursive tail-call. A subset of these will be
stack-allocated before all others at entry to the
subroutine. This subset is chosen by (1) select-
ing the smallest allocations and (2) keeping the
sum of the sizes below the maximum waste al-
lowed given the size of the subroutine’s activa-
tion record. Small allocations are chosen so that
as many as possible can be stack-allocated.

At this point the eligible allocations left untreated are
long allocations within loops and those of large or un-
known size which extend into or across recursive calls.
I have chosen to ignore long loop allocations and al-
locations across recursive calls because long loop al-
locations require the analysis of linked structures and
arrays and because overlap with long allocations can
prevent both long and short allocations. Since short
allocations are more easily handled, I chose to opti-
mize them first.

It is clear that a call graph is very beneficial to this
analysis, since worst-case assumptions will otherwise
prevent many stack-allocations. Note that within
non-recursive subroutines all eligible allocations out-
side of loops are short, and that those within loops
may be handled by the run-time checks described in
section 6.3.

8 Comparison with other
strategies

This strategy is designed to be safe, and is in fact at
least as safe as any other. Stack allocation of num-
bers in Lisp compilers appears to be more general,
but is in fact more general only when it is unsafe
(that is, when they are stack-allocated into a tail-
call). Extension of the Lisp strategy for numbers to
other data types (strings, for example) is unsafe. The
interval-based strategy proposed for the SETL com-
piler is both less general and unsafe; this approach
can allocate storage with lifetime escaping an inter-
val, while the interval approach cannot, but the inter-
val strategy only reclaims stack storage on exit from
an interval (allowing unbounded waste within loops).

The strategies of Barth and Ruggieri are both safe
because they fall back on garbage collection, but are
also less efficient. The strategy proposed here can
be combined with their approaches to allow the more
efficient use of uncollectible stack storage where it is
safe.

Allocation optimization may be more suited to
trace-and-sweep and reference counting collectors

than it is to the newer (generational) compacting col-
lectors [LH83, Moo84, Ung84]. Appel and MacQueen
[AM87] have noted that with sufficient memory the
asymptotic cost of allocation and collection of an ob-
ject reduces to the cost of object allocation, which
(with a compacting collector) is comparable to the
cost of stack allocation. As Appel also noted, in-
creasing the size of the stack can slow down incre-
mental collection algorithms. However, compacting
collectors have other costs [Cha87] and are not always
compatible with the (admittedly grubby) semantics
of common programming languages.

9 Conclusions

Safety conditions for storage allocation are complex,
but can be satisfied for several general classes of al-
location. It appears that a call graph is necessary for
useful safety analysis.

Good treatments of long allocations are still lack-
ing. Long loop allocations need analysis that doesn’t
exist yet, and long allocations in recursive subroutines
cause problems by overlapping and interfering with
short allocations and other long allocations. Optimal
selection of short loop allocations is intractable, so (if
allocation optimization is to be used) heuristics need
to be developed. I have not addressed these problems
in this paper.

Finally, practical experience is needed. This paper
was written to help determine what is needed for safe
storage allocation and what is practical and possible.
It is not known how many allocations will be eligible,
nor is it known how many of these will be judged
“safe”, nor if the safety conditions described here are
in practice too conservative.
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A NP-completeness proofs

Here are NP-completeness proofs for two problems re-
lated to optimal choice of short stack allocation sites
in a loop. In both cases a solution with cost less
than K can be verified in polynomial time, so both
problems are contained in NP. Both problems solve
a polynomial-time transformation of Vertex Cover
[GJ79], so they are NP-complete.

A.1 Min-cost acyclic union of acyclic
lifetimes

Given a rooted strongly connected graph G with no
embedded cycles not passing through root (R), and
given a set S of rooted acyclic subgraphs Di in G
such that their union contains a cycle, find the small-
est set of DAGs to remove from S so that the union of
the remaining DAGs is acyclic. Vertex Cover can be
transformed to an instance of this problem in poly-
nomial time.

Given an undirected graph G′ = (V ′, E′), create a
rooted directed graph G = (V, E) with root vertex R
and a set of rooted DAGs using the following steps:

1. For each vi in V ′, add vertices ai, bi, and i to
V and edges 〈R, ai〉, 〈bi, R〉, 〈ai, bi〉, 〈R, i〉, 〈i, bi〉
to E. The resulting graph is rooted at R and
strongly connected, and all cycles pass through
the root.

2. For each vi in V ′, create a DAG Di with edges
〈i, bi〉, 〈bi, R〉, 〈R, ai〉. At this point the union of
the DAGs is acyclic. See figure 6.

3. For each edge e = 〈vi, vj〉 in E′, add vertices
cj
i , d

j
i , c

i
j , d

i
j to G, Di, and Dj and edges

〈ai, c
j
i 〉, 〈ai, ci

j〉, 〈c
j
i , d

j
i 〉, 〈di

j , bi〉, 〈i, di
j〉

to Di and G and edges

〈aj , ci
j〉, 〈aj , c

j
i 〉, 〈c

j
j , d

i
j〉, 〈d

j
i , bj〉, 〈j, dj

i 〉

to Dj and G. See figure 7. For each i, Di is still
acyclic and rooted at i, and G is still strongly
connected and still contains no cycles not pass-
ing through R. Note that the union of Di and Dj

contains 4 simple cycles through R which corre-
spond to the edge between vi and vj .

Consider the effects of not including Di in the union
of the DAGs; each set of four cycles broken corre-
sponds to an edge removed if vi is not included in G′.
The smallest set of DAGs excluded from the union
corresponds to the smallest vertex cover of G′.

A.2 Min-cost union with no cycles
through roots

Given a rooted strongly connected graph G with no
embedded cycles not passing through root (R) and
a set S of rooted subgraphs Si in G such that each
Si does not contain a cycle through Si’s root, and
given that the union of the subgraphs does contain a
cycle through the root of some Si, find the smallest
set of subgraphs to remove from S so that the the
union contains no cycle through the root of any Si.
Vertex Cover can be transformed to an instance of
this problem in polynomial time.

Given an undirected graph G′ = (V ′, E′), create a
rooted directed graph G = (V, E) with root vertex R
and subgraphs Si using the following steps:

1. For each vi in V ′, add vertex i to V and edges
〈R, i〉 and 〈i, R〉 to E.

2. For each vi in V ′ create subgraph Si with edge
〈i, R〉 and, for each j such that 〈vi, vj〉 is an edge
in G′, edges 〈j, R〉 and 〈R, j〉. Thus, vertex i in
G will lie in the cyclic portion of subgraph j if
and only if 〈vi, vj〉 is an edge in G′.

Clearly, selecting subgraphs to remove from S so
that the union of subgraphs in S contains no cycles
through a root of a subgraph in S is equivalent to
finding a vertex cover for G′.
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Figure 6: Initial DAG union
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